数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 487|回复: 5

求椭圆周长的积分式和无穷级数展开式

[复制链接]
发表于 2018-8-2 09:58 | 显示全部楼层 |阅读模式


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2020-12-6 19:23 | 显示全部楼层
陆老师好,红圈部分应该是小于2π吧

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

发表于 2020-12-6 23:25 | 显示全部楼层
呼叫陆老师
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-12-7 08:18 | 显示全部楼层
谢谢楼上 永远 指出我的笔误!现已更正。
回复 支持 反对

使用道具 举报

发表于 2021-4-5 20:47 | 显示全部楼层
求椭圆周长的积分式和无穷级数展开式


一个长半轴为\(a\)、短半轴为\(b\)的椭圆,参数方程为\(\left\{ {\begin{array}{*{20}{c}}
  {x = a\cos \theta } \\
  {y = b\sin \theta }
\end{array}} \right.\)(\(0 \leqslant \theta  < 2\pi\))。
由于对称性,我们求椭圆周长时,只要先求\(0 \leqslant \theta  < \frac{\pi }{2}\)的一段,再乘以\(4\)就可以了。
将\(\theta\)的取值范围\([0,\frac{\pi }{2})\)等分成\(n\)段,相应地,椭圆弧也分成了\(n\)段。椭圆弧上第\(k\)段两端的坐标为\({P_{k - 1}}(a\cos \frac{{(k - 1)\pi }}{{2n}},b\sin \frac{{(k - 1)\pi }}{{2n}})\)和\({P_k}(a\cos \frac{{k\pi }}{{2n}},b\sin \frac{{k\pi }}{{2n}})\)。
连接\({P_0}{P_1}\;,\;{P_1}{P_2}\;, \cdots ,\;{P_{n - 1}}{P_n}\),成为一条内接于椭圆的折线,这段折线的全长为
\(\small\begin{gathered}
  \sum\limits_{k = 1}^n {\overline {{P_{k - 1}}{P_k}} }  = \sum\limits_{k = 1}^n {\sqrt {{a^2}{{[\cos \frac{{k\pi }}{{2n}} - \cos \frac{{(k - 1)\pi }}{{2n}}]}^2} + {b^2}{{[\sin \frac{{k\pi }}{{2n}} - \sin \frac{{(k - 1)\pi }}{{2n}}]}^2}} }  \hfill \\
  \quad \quad \quad \quad \quad \;\; = \sum\limits_{k = 1}^n {\sqrt {{a^2}{{[ - 2\sin \frac{{(2k - 1)\pi }}{{4n}}\sin \frac{\pi }{{4n}}]}^2} + {b^2}{{[2\cos \frac{{(2k - 1)\pi }}{{4n}}\sin \frac{\pi }{{4n}}]}^2}} }  \hfill \\
  \quad \quad \quad \quad \quad \quad \quad \quad \quad  = \frac{\pi }{{2n}}\sum\limits_{k = 1}^n {\sqrt {{a^2}{{[\sin \frac{{(2k - 1)\pi }}{{4n}}\sin \frac{\pi }{{4n}}/\frac{\pi }{{4n}}]}^2} + {b^2}{{[\cos \frac{{(2k - 1)\pi }}{{4n}}\sin \frac{\pi }{{4n}}/\frac{\pi }{{4n}}]}^2}} }  \hfill \\ \end{gathered} \)
令\(n \to \infty\),这段内接于椭圆的折线长就会无限接近于椭圆的弧长\(C\)。
由\(\mathop {\lim }\limits_{n \to \infty } \sin \frac{\pi }{{4n}}/\frac{\pi }{{4n}} = 1\)及定积分定义\(\;\displaystyle\mathop {\lim }\limits_{n \to \infty } \frac{\pi }{{2n}}\sum\limits_{k = 1}^n {f(\frac{{(k - \frac{1}{2})\pi }}{{2n}})}  = \int_0^{\frac{\pi }{2}} {f(\theta )d\theta }\)可知有(为方便研究,这里我们令:\(\lambda  = \tfrac{{a - b}}{{a + b}}\)):\[\;\displaystyle\begin{align}
C &= \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {\overline {{P_{k - 1}}{P_k}} }  \\
&= \mathop {\lim }\limits_{n \to \infty } \frac{\pi }{{2n}}\sum\limits_{k = 1}^n {\sqrt {{a^2}{{\sin }^2}\frac{{(2k - 1)\pi }}{{4n}} + {b^2}{{\cos }^2}\frac{{(2k - 1)\pi }}{{4n}}} }  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}{{\sin }^2}\theta  + {b^2}{{\cos }^2}\theta } \;d\theta }  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}\left( {1 - {{\cos }^2}\theta } \right) + {b^2}{{\cos }^2}\theta } } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}{{\cos }^2}\theta  + {b^2}{{\cos }^2}\theta } } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}\tfrac{{1 + \cos 2\theta }}{2} + {b^2}\tfrac{{1 + \cos 2\theta }}{2}} } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - \tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
  &= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2} + {b^2}}}{2} - \tfrac{{{a^2} - {b^2}}}{2}\cos 2\theta } } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{2{a^2} + 2{b^2}}}{4} - \tfrac{{2{a^2} - 2{b^2}}}{4}\cos 2\theta } } d\theta  \\
&= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2}}}{4} - \tfrac{{2\left( {a - b} \right)\left( {a + b} \right)}}{4}\cos 2\theta } } d\theta  \\
&= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2} - 2\left( {a - b} \right)\left( {a + b} \right)\cos 2\theta } } d\theta  \\
&= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2}\left[ {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } \right]} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } } d\theta  \\
  &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - 2\lambda \cos 2\theta } } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda \left( {{e^{2i\theta }} + {e^{ - 2i\theta }}} \right)} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2}{e^{2i\theta  - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + \lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \left( {\lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \lambda {e^{ - 2i\theta }}\left( {\lambda {e^{2i\theta }} - 1} \right)} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) - \lambda {e^{ - 2i\theta }}\left( {1 - \lambda {e^{2i\theta }}} \right)} } d\theta  \\
  &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right)\left( {1 - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right){\int_0^{\frac{\pi }{2}} {\left( {1 - \lambda {e^{2i\theta }}} \right)} ^{\tfrac{1}{2}}}{\left( {1 - \lambda {e^{ - 2i\theta }}} \right)^{\tfrac{1}{2}}}d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;k}} } {\left( { - \lambda {e^{2i\theta }}} \right)^{\;k}}\sum\limits_{j = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;j}} {\left( { - \lambda {e^{ - 2i\theta }}} \right)^{\;j}}d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {(_{\;k}^{1/2}){{( - \lambda )}^k}{e^{2k{\kern 1pt} \theta {\kern 1pt} i}}} \sum\limits_{j = 0}^\infty  {(_{\;j}^{1/2}){{( - \lambda )}^j}{e^{ - 2j{\kern 1pt} \theta {\kern 1pt} i}}} d\theta }  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {\sum\limits_{j = 0}^\infty  {(_{\;k}^{1/2})(_{\;j}^{1/2}){{( - \lambda )}^{k + j}}{e^{2k\theta i}}{e^{ - 2j\theta i}}} } d\theta }  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}\cos [2(2k - n)\theta ]} } d\theta }  \\
&= \frac{1}{2}\left( {a + b} \right)\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}} } \int_0^{\frac{\pi }{2}} {\cos [2(2k - n)\theta ]d\theta }  \\
\end{align}\]
其中,因为已知\(0 < \lambda  < 1\),所以\(\left| {\,{{( - \lambda )}^n}\,} \right| < 1\),再加上有\(\left| {\,\cos [2(2k - n)]\,} \right| \leqslant 1\),所以双重求和式\(\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;\,k}^{1/2})(_{\;n - k}^{\;1/2}){{( - \lambda )}^n}\cos [2(2k - n)]} } \)一致收敛,因此求和号与积分号可以互相交换。
当\(2k \ne n\)时,\(\;\displaystyle\int_0^{\frac{\pi }{2}} {\cos [2(2k - n)]d\theta }  = \left. {\frac{1}{{2(2k - n)}}\sin [2(2k - n)\theta ]} \right|_0^{\frac{\pi }{2}} = 0\)。

当\(2k = n\)时,\(\;\displaystyle\int_0^{\frac{\pi }{2}} {\cos [2(2k - n)]d\theta }  = \int_0^{\frac{\pi }{2}} {\cos 0d\theta }  = \int_0^{\frac{\pi }{2}} {1d\theta }  = \frac{\pi }{2}\)。
由此可见,在求和式\(\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;\,k}^{1/2})(_{\;n - k}^{\;1/2}){{( - \lambda )}^n}\cos [2(2k - n)]} } \)中,\(2k = n\)的项都是\(0\),只有\(2k = n = m\)的项不为\(0\),所以双重求和式可以变成一重求和式,有
\(\begin{gathered}
  \frac{1}{2}\left( {a + b} \right)\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{{\kern 1pt} \;1/2}){{( - \lambda )}^n}} } \int_0^{\frac{\pi }{2}} {\cos [2(2k - n)]d\theta }  = \frac{\pi }{4}\left( {a + b} \right)\sum\limits_{m = 0}^\infty  {(_{\,{\kern 1pt} m}^{1/2})(_{\,{\kern 1pt} m}^{1/2}){{( - \lambda )}^{m + m}}}  \hfill \\
  \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  = \frac{\pi }{4}\left( {a + b} \right)\sum\limits_{m = 0}^\infty  {{{(_{\,{\kern 1pt} m}^{1/2})}^2}{\lambda ^{2m}}}  \hfill \\
\end{gathered} \)
这就是求\(\frac{1}{4}\)椭圆周长的积分公式。
回复 支持 反对

使用道具 举报

发表于 2021-4-5 20:48 | 显示全部楼层
对楼上陆教授贴子的整理
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2021-4-17 21:39 , Processed in 0.078125 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表