数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{忙活大半年,蠢疯顽瞎}\color{red}{\textbf{集论白痴依然}}\)

[复制链接]
发表于 2024-9-21 08:32 | 显示全部楼层
elim 发表于 2024-9-21 08:29
孬种认为单调严格增序列\(\{n\}\)的极限 \(\mu = \displaystyle\lim_{n\to\infty}n\in\mathbb{N}\).
因为 ...


elim根本就不知道传统意义下的自然数集是无限集?也根本不知道什么是现行数学极限集?更不知道Cantor实整数集与Peano axioms公理的关系!elim对极限集陈述的依据均来你臆想!Cantor实正整数集为\(\{1,2,…,\nu,ω+1,ω+2,…\}\),注意Cantor实正整数集中没有符号∞,多出了\(\nu\)和ω,关于\(\nu\)和ω的数学含意请阅Cantor《超穷数理论基础》P42~P43页。以周民强为代表的单减集列\(\{A_n\}\)的定义式为,\(\displaystyle\lim_{k→∞} A_n=\displaystyle\bigcap_{n=1}^∞ A_n\),这个定义式用Cantor的实正整数理应表示为:\(A_ω=\displaystyle\bigcap_{n=1}^ω A_n\)。对于e氏单减集列\(\{A_n=\{m∈N:m>n\}\}\)的极限集亦等价表述为\(A_ω=\displaystyle\bigcap_{n=1}^ω A_n=\)\(\{ω+1,ω+2,…\}\)。
所以\(N_∞=A_∞=A_ω=\{ω+1,ω+2,…\}≠\phi\).再次强调,式中的ω康托尔解释说是适当的无穷大,而∞则是不适当的无穷大(参见Cantor《超穷数理论基础》P42页第13~15行)。因而elim的【\(A_n=\{m\in\mathbb{N}^*:m>n\},\), 则 \(\omega+j\not\in A_{\omega+j}\).
所以\(\quad(1)\qquad\displaystyle \omega+j\not\in\bigcap_{n\in\mathbb{N}^*} A_n = N_\infty\).  与
孬式\(\quad(2)\qquad H_\infty = \{\omega+1,\omega+2,\ldots\}\)
联立得 \(N_\infty = N_\infty\cap N_\infty\overset{(2)}{=} N_\infty\cap\{\omega+1,\omega+2,\ldots\}\)
\(\qquad\qquad\;\;= N_\infty\cap\displaystyle\bigcup_{j=1}^\infty\{\omega+j\}=\bigcup_{j=1}^\infty(N_\infty\cap\{\omega+j\})\overset{(1)}{=}\phi\)】才是难以自圆其说的鬼哭狼嚎!至于【周民强的 \(N_\infty=\phi\) 】那是elim生吞周氏例5的错觉,elim应该注意到根据你这个错觉和你的【逐点排查】可成功证明了\(\mathbb{N}=\phi\),elim先生,你多牛逼的发明啊!哈哈哈!!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-21 23:11 | 显示全部楼层
孬种认为单调严格增序列\(\{n\}\)的极限 \(\mu = \displaystyle\lim_{n\to\infty}n\in\mathbb{N}\).
因为所论极限值\(\mu\)不小于序列的任何一项,所以孬种
的认定导致 \(\mu=\max\mathbb{N}\). 这与\(\mathbb{N}\)没有最大数矛盾。
设 \(\mathbb{N}^*\)为\(\mathbb{N}\)的含超限数\(\displaystyle\lim_{n\to\infty}n\)的Peano扩充序集。
令\(S=\mathbb{N}^*-\mathbb{N},\;s\in S\) 则对任意 \(j\in\mathbb{N},\,s-j\in S\)
否则 \(s=(s-j)+j\in\mathbb{N}. \;\; \mathbb{N}^*\)的非空子集\(S\)没有最小元,
故 \(\mathbb{N}^*\) 不是良序集。超限归纳法在\(\mathbb{N}^*\)上不成立。
这样的东西不能扩充成\(\mathbb{Z},\,\mathbb{Q},\mathbb{R}\) 因而无法取代\(\mathbb{N}\).

另外\(\forall \alpha\in\mathbb{N}^*,\;\alpha\not\in A_\alpha\)因此\(\forall \alpha\in\mathbb{N}^*\,(\alpha\not\in\displaystyle\bigcap_{\eta\in\mathbb{N}^*}A_\eta=N_\infty)\)
仍有 \(\displaystyle\bigcap_{\eta\in\mathbb{N}^*}A_\eta = \phi\)

无论孬种咋样扯,它总是不懂集论反数学的蠢东西。
回复 支持 反对

使用道具 举报

发表于 2024-9-22 09:42 | 显示全部楼层
elim 发表于 2024-9-21 23:12
孬种认为单调严格增序列\(\{n\}\)的极限 \(\mu = \displaystyle\lim_{n\to\infty}n\in\mathbb{N}\).
因为 ...

elim野种攻击打压了春风晚霞近一年了,你知道你相对\(A_n\)、\(A_n^c\)的全集是什么吗?野种一定会想当然地回答相对于\(A_n\)、\(A_n^c\)的全集\(\Omega\)是\(\mathbb{N}\)呀!但老夫告诉你,你的想当然\(\color{red}{错得离谱!}\)事实上相对于\(A_n、A_n^c\)的全集任何时候都是\(A_n\cup A_n^c\)!就野种所给单调递减集列\(\{A_n=\{m∈N:m>n\}\}\)来说,相对\(A_n、A_n^c\)的全集\(\Omega=A_1\cup A_1^c\)\(=A_2\cup A_2^c\)…\(=A_k\cup A_k^c\)……\(=A_1\cup\{1\}\)。在全集\(\Omega\)范围内还有\(N_∞=A_∞=\Omega\)\(-\displaystyle\bigcup_{n =1}^∞ A_n^c=\phi\)吗?野种真够野啊!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-22 11:07 | 显示全部楼层
集论白痴没少读有关集论的书,还是不知道对 \(A_n=\{m\in\mathbb{N},m>n\},\)
恒有 \(\;A_n\cup A_n^c = \mathbb{N}\,(n=1,2,\ldots)\)?
令 \(N_\infty = \displaystyle\bigcap_{n=1}^\infty A_n,\) 据周氏【实函】
介绍的那点集论,有 \(N_\infty=\displaystyle\lim_{n\to\infty}A_n=\big(\lim_{n\to\infty}A_n^c\big)^c=\mathbb{N}^c=\phi\)

孬种称周民强种野,是指周的集论与其它书著一致都是野种,
还是蠢疯顽瞎为其极限集走眼目测孬法辩护的泼妇骂街?

孬种的胡扯千头万绪,归根结底人太蠢,种太孬
回复 支持 反对

使用道具 举报

发表于 2024-9-22 17:43 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-9-23 05:20 编辑
elim 发表于 2024-9-22 11:07
集论白痴没少读有关集论的书,还是不知道对 \(A_n=\{m\in\mathbb{N},m>n\},\)
恒有 \(\;A_n\cup A_n^c = \ ...


elim,任何时候相对于任何列集列的\(A_n、A_n^c\),全集都是\(\Omega=A_n\cup A_n^c\)!特別的对e氏单调递减集列\(\{A_n=\{m∈N:m>n\}\}\),\(\Omega=A_1\cup A_1^c\)\(=A_2\cup A_2^c\)…\(=A_k\cup A_k^c\)……,为确定起见,令\(\color{red}{\Omega=A_1\cup\{1\}}\)。elim说【\(A_n=\{m\in\mathbb{N},m>n\}\)恒有 \(\;A_n\cup A_n^c = \mathbb{N}\)】是e氏的臆测,缺失逻辑依据!elim定义【 \(N_\infty = \displaystyle\bigcap_{n=1}^\infty A_n\)】 老夫也无异议。但说【据周氏【实函】介绍的那点集论,有 \(N_\infty=\displaystyle\lim_{n\to\infty}A_n=\big(\lim_{n\to\infty}A_n^c\big)^c=\mathbb{N}^c=\phi\)】这是对周民强《实变函数论》地亵渎!是elim对【逐点排查】诡辩!因为elim所论集列\(\{A_n^c\}\)单增,所以根据周民强《实变函数论》P9页定义1.8有\(\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\),注意这是等式演译,若该等式两端同时取补,那就是\(\displaystyle\lim_{n→∞} A_n=\displaystyle\bigcap_{n =1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…,\}≠\phi\)!所以\(N_∞=A_∞=\displaystyle\lim_{n→∞}\{n+1,n+2,…,\}≠\phi\)!
elim你生吞周民强《实变函数论》P9页例5是反周民强《实变函数论》的!如果我们用你的【逐点排查】和对该例的应用,我们可\(\color{red}{戏证\mathbb{N}^+=\phi}\),现戏证如下:
【证明:】\(\because\quad\forall n∈\mathbb{N}^+,都有n∈[n,∞)\),
\(\therefore\quad\mathbb{N}^+\subseteq [n,∞)\)(子集定义)
\(\therefore\quad\mathbb{N}^+=\)\(\displaystyle\lim_{n→∞}\mathbb{N}^+\subseteq\displaystyle\lim_{n→∞}[n,∞)=\phi\)!
elim,你近一年称我是孬种,我称你为野种,又有什么泼妇骂街之嫌?你污蔑用【周的集论与其它书著】极限集定义,求你所论集列极限的求法是“目测法”,你鼓吹你那个漏洞百出的【逐点排查】是精确计算,所以你就是野种!
回复 支持 反对

使用道具 举报

发表于 2024-9-24 09:20 | 显示全部楼层
elim 发表于 2024-9-23 06:17
孬种这辈子想从良是没有指望了.  
它从子集定义搞出\(\mathbb{N}^+\subseteq [n,\infty)\;(\forall n\in\m ...


elim野种,你的【逐点排查】遍历了\(\mathbb{N}^+\)所有数了吗?根据你的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义,\(A_k=\{k+1,k+2,k+3,…\}\),所以你【逐点排查】法泵理【对任意\(m\in\mathbb{N}\), 只要\(n\ge m\) 就有 \(m\not\in A_n\) 所以
\(\quad\forall m\in\mathbb{N}\,(m\not\in\displaystyle\lim_{n\to\infty}A_n=N_{\infty})\)
\(\quad\)故\(N_{\infty}\)不含任何自然数,即\(N_{\infty}=\varnothing\)】\(\color{red}{错就错在m并未遍历\mathbb{N}^+!}\)根据数的三歧性(也叫数的三分律):你只证明了①、m<n;②、m=n这两种情,而对③、m>n这种情形根本就未论及,事实上m>n时,\(m∈A_n\)才是\(A_∞≠\phi\)的关键,如\(\forall k∈\mathbb{N}\)固然有当n≤k时\(n\notin A_k\),但当n>k时,如n=k+1;n=k+2;n=k+3;……却有\(A_k=\{k+1,k+2,k+3,…\}\),所以你说你的【逐点排查】遍历了\(\mathbb{N}^+\)的所有自然数,欺骗你自己个也许有可能。欺骗论坛中众多网友那是根本不可能的。所以你的【逐点排查】最多也是证明了\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\),根本就没有证明到\(\displaystyle\lim_{n→∞} A_n=\phi\)即你根本就没有证明到\(N_∞=\phi\)!对于单减集列极限集,以周民强《实变函数论》为代表的现行教科书都一致认为\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n\);所以对elim所给集列\(\{A_n=\{m∈N:m>n\}\}\)有\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}≠\phi\)!现行教科书求单减极列\(\{A_n\}\)的极限集都是根据极限集的定义直按计算\(\displaystyle\lim_{n→∞} A_n\)的。要想用\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\)论证\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)就必须弄清楚相对于\(A_n、A_n^c\)的全集\(\Omega\)是什么?因为对任何集列\(\{A_n\}\)、任何时候都有\(\Omega=A_n\cup A_n^c\),对\(\{A_n=\{m∈N:m>n\}\}\)有\(\Omega=A_1\cup A_1^c=\)\(A_2\cup A_2^c=\)……\(\displaystyle\lim_{n→∞} A_n\cup\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\)\(\cup\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
\(\Omega=\displaystyle\bigcup_{n=1}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),于是\(\forall k∈\mathbb{N}\)有\(A_k=\displaystyle\bigcup_{n={k+1}}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),根据Cantor超穷数和方嘉琳《集合论》超限数理论,我们立得\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\)\(\displaystyle\bigcap_{n=1}^ω\{n+1,n+2,n+3,…\}\)=\(\{ω+1,ω+2,ω+3,…\}\),所以\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)
至于戏证\(\mathbb{N}=\phi\),那是对【逐点排查】生吞周氏《实变函数论》P9页例5的嘲讽。由\(\forall n∈N,恒有n∈[n,∞)\)得\(\mathbb{N}\subseteq [n,∞)\)有什么错?而\(\displaystyle\lim_{n→∞}\mathbb{N}\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)这不是你证明\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\phi\)的贯用手笔吗?elim野种,\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\),\(\Omega-\mathbb{N}=\{ω+1,ω+2,…,ω+\nu\}\)还等于空集吗?野种真是野啊!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-24 09:22 | 显示全部楼层
孬种这辈子想从良是没有指望了.  
它从子集定义搞出\(\mathbb{N}^+\subseteq [n,\infty)\;(\forall n\in\mathbb{N}^+)\)
(1) \(\small A_n^c=\Omega-A_n\) 由全集\(\small\Omega\)决定而不是相反,\(\small\displaystyle\bigcap_{n=1}^\infty A_n\) 中的\(\small n\)在\(\small\mathbb{N}^+\)中遍历。
\(\quad\)所以介绍集论的作者在论及\(\mathbb{N}\)的子集序列的时候都默认全集是\(\mathbb{N}\).

(2) 其实孬种的全集诡辩一点用都莫有:\(A_n=\{m\in\mathbb{N}:m>n\}\subset\mathbb{N}\),
\(\therefore\quad\displaystyle\lim_{n\to\infty}A_n=\mathbb{N}-\lim_{n\to\infty}(\mathbb{N}-A_n)=\mathbb{N}-\lim_{n\to\infty}\{m\in\mathbb{N}:m\le n\}=\phi\)

孬种的作孬千头万绪,归根到底人太蠢,种太孬
回复 支持 反对

使用道具 举报

发表于 2024-9-24 09:28 | 显示全部楼层
elim 发表于 2024-9-24 09:22
孬种这辈子想从良是没有指望了.  
它从子集定义搞出\(\mathbb{N}^+\subseteq [n,\infty)\;(\forall n\in\m ...


elim野种,你的【逐点排查】遍历了\(\mathbb{N}^+\)所有数了吗?根据你的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义,\(A_k=\{k+1,k+2,k+3,…\}\),所以你【逐点排查】法泵理【对任意\(m\in\mathbb{N}\), 只要\(n\ge m\) 就有 \(m\not\in A_n\) 所以
\(\quad\forall m\in\mathbb{N}\,(m\not\in\displaystyle\lim_{n\to\infty}A_n=N_{\infty})\)
\(\quad\)故\(N_{\infty}\)不含任何自然数,即\(N_{\infty}=\varnothing\)】\(\color{red}{错就错在m并未遍历\mathbb{N}^+!}\)根据数的三歧性(也叫数的三分律):你只证明了①、m<n;②、m=n这两种情,而对③、m>n这种情形根本就未论及,事实上m>n时,\(m∈A_n\)才是\(A_∞≠\phi\)的关键,如\(\forall k∈\mathbb{N}\)固然有当n≤k时\(n\notin A_k\),但当n>k时,如n=k+1;n=k+2;n=k+3;……却有\(A_k=\{k+1,k+2,k+3,…\}\),所以你说你的【逐点排查】遍历了\(\mathbb{N}^+\)的所有自然数,欺骗你自己个也许有可能。欺骗论坛中众多网友那是根本不可能的。所以你的【逐点排查】最多也是证明了\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\),根本就没有证明到\(\displaystyle\lim_{n→∞} A_n=\phi\)即你根本就没有证明到\(N_∞=\phi\)!对于单减集列极限集,以周民强《实变函数论》为代表的现行教科书都一致认为\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n\);所以对elim所给集列\(\{A_n=\{m∈N:m>n\}\}\)有\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}≠\phi\)!现行教科书求单减极列\(\{A_n\}\)的极限集都是根据极限集的定义直按计算\(\displaystyle\lim_{n→∞} A_n\)的。要想用\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\)论证\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)就必须弄清楚相对于\(A_n、A_n^c\)的全集\(\Omega\)是什么?因为对任何集列\(\{A_n\}\)、任何时候都有\(\Omega=A_n\cup A_n^c\),对\(\{A_n=\{m∈N:m>n\}\}\)有\(\Omega=A_1\cup A_1^c=\)\(A_2\cup A_2^c=\)……\(\displaystyle\lim_{n→∞} A_n\cup\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\)\(\cup\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
\(\Omega=\displaystyle\bigcup_{n=1}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),于是\(\forall k∈\mathbb{N}\)有\(A_k=\displaystyle\bigcup_{n={k+1}}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),根据Cantor超穷数和方嘉琳《集合论》超限数理论,我们立得\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\)\(\displaystyle\bigcap_{n=1}^ω\{n+1,n+2,n+3,…\}\)=\(\{ω+1,ω+2,ω+3,…\}\),所以\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)
至于戏证\(\mathbb{N}=\phi\),那是对【逐点排查】生吞周氏《实变函数论》P9页例5的嘲讽。由\(\forall n∈N,恒有n∈[n,∞)\)得\(\mathbb{N}\subseteq [n,∞)\)有什么错?而\(\displaystyle\lim_{n→∞}\mathbb{N}\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)这不是你证明\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\phi\)的贯用手笔吗?elim野种,\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\),\(\Omega-\mathbb{N}=\{ω+1,ω+2,…,ω+\nu\}\)还等于空集吗?野种真是野啊!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-24 10:42 | 显示全部楼层
孬种认为单调严格增序列\(\{n\}\)的极限 \(\mu = \displaystyle\lim_{n\to\infty}n\in\mathbb{N}\).
因为所论极限值\(\mu\)不小于序列的任何一项,所以孬种
的认定导致 \(\mu=\max\mathbb{N}\). 这与\(\mathbb{N}\)没有最大数矛盾。
设 \(\mathbb{N}^*\)为\(\mathbb{N}\)的含超限数\(\displaystyle\lim_{n\to\infty}n\)的Peano扩充序集。
令\(S=\mathbb{N}^*-\mathbb{N},\;s\in S\) 则对任意 \(j\in\mathbb{N},\,s-j\in S\)
否则 \(s=(s-j)+j\in\mathbb{N}. \;\; \mathbb{N}^*\)的非空子集\(S\)没有最小元,
故 \(\mathbb{N}^*\) 不是良序集。超限归纳法在\(\mathbb{N}^*\)上不成立。
这样的东西不能扩充成\(\mathbb{Z},\,\mathbb{Q},\mathbb{R}\) 因而无法取代\(\mathbb{N}\).

另外\(\forall \alpha\in\mathbb{N}^*,\;\alpha\not\in A_\alpha\)因此\(\forall \alpha\in\mathbb{N}^*\,(\alpha\not\in\displaystyle\bigcap_{\eta\in\mathbb{N}^*}A_\eta=N_\infty)\)
仍有 \(\displaystyle\bigcap_{\eta\in\mathbb{N}^*}A_\eta = \phi\)

无论孬种咋样扯,它总是不懂集论反数学的蠢东西。
回复 支持 反对

使用道具 举报

发表于 2024-9-24 11:44 | 显示全部楼层
elim 发表于 2024-9-24 10:42
孬种认为单调严格增序列\(\{n\}\)的极限 \(\mu = \displaystyle\lim_{n\to\infty}n\in\mathbb{N}\).
因为 ...


elim野种,你的【逐点排查】遍历了\(\mathbb{N}^+\)所有数了吗?根据你的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义,\(A_k=\{k+1,k+2,k+3,…\}\),所以你【逐点排查】法泵理【对任意\(m\in\mathbb{N}\), 只要\(n\ge m\) 就有 \(m\not\in A_n\) 所以
\(\quad\forall m\in\mathbb{N}\,(m\not\in\displaystyle\lim_{n\to\infty}A_n=N_{\infty})\)
\(\quad\)故\(N_{\infty}\)不含任何自然数,即\(N_{\infty}=\varnothing\)】\(\color{red}{错就错在m并未遍历\mathbb{N}^+!}\)根据数的三歧性(也叫数的三分律):你只证明了①、m<n;②、m=n这两种情,而对③、m>n这种情形根本就未论及,事实上m>n时,\(m∈A_n\)才是\(A_∞≠\phi\)的关键,如\(\forall k∈\mathbb{N}\)固然有当n≤k时\(n\notin A_k\),但当n>k时,如n=k+1;n=k+2;n=k+3;……却有\(A_k=\{k+1,k+2,k+3,…\}\),所以你说你的【逐点排查】遍历了\(\mathbb{N}^+\)的所有自然数,欺骗你自己个也许有可能。欺骗论坛中众多网友那是根本不可能的。所以你的【逐点排查】最多也是证明了\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\),根本就没有证明到\(\displaystyle\lim_{n→∞} A_n=\phi\)即你根本就没有证明到\(N_∞=\phi\)!对于单减集列极限集,以周民强《实变函数论》为代表的现行教科书都一致认为\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n\);所以对elim所给集列\(\{A_n=\{m∈N:m>n\}\}\)有\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}≠\phi\)!现行教科书求单减极列\(\{A_n\}\)的极限集都是根据极限集的定义直按计算\(\displaystyle\lim_{n→∞} A_n\)的。要想用\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\)论证\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)就必须弄清楚相对于\(A_n、A_n^c\)的全集\(\Omega\)是什么?因为对任何集列\(\{A_n\}\)、任何时候都有\(\Omega=A_n\cup A_n^c\),对\(\{A_n=\{m∈N:m>n\}\}\)有\(\Omega=A_1\cup A_1^c=\)\(A_2\cup A_2^c=\)……\(\displaystyle\lim_{n→∞} A_n\cup\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\)\(\cup\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
\(\Omega=\displaystyle\bigcup_{n=1}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),于是\(\forall k∈\mathbb{N}\)有\(A_k=\displaystyle\bigcup_{n={k+1}}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),根据Cantor超穷数和方嘉琳《集合论》超限数理论,我们立得\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\)\(\displaystyle\bigcap_{n=1}^ω\{n+1,n+2,n+3,…\}\)=\(\{ω+1,ω+2,ω+3,…\}\),所以\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)
至于戏证\(\mathbb{N}=\phi\),那是对【逐点排查】生吞周氏《实变函数论》P9页例5的嘲讽。由\(\forall n∈N,恒有n∈[n,∞)\)得\(\mathbb{N}\subseteq [n,∞)\)有什么错?而\(\displaystyle\lim_{n→∞}\mathbb{N}\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)这不是你证明\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\phi\)的贯用手笔吗?elim野种,\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\),\(\Omega-\mathbb{N}=\{ω+1,ω+2,…,ω+\nu\}\)还等于空集吗?野种真是野啊!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2024-10-18 13:18 , Processed in 0.224609 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表