|
elim 发表于 2024-9-7 07:55
令\(A_n=\{m\in\mathbb{N}: m> n\},\;N_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\).
因为没有自 ...
对递减集列\(\{A_n=\{m∈N:m>n\}\}\)的极限集elim赖以证明\(\displaystyle\bigcap_{k=1}^∞ A_k=\phi\)的一阶谓词逻辑演译是\(\color{red}{不自洽的!}\).
elim认为【令\(A_n=\{m∈N:m>n\},N_∞=\displaystyle\bigcap_{n=1}^∞ A_n\).
因为没有自然数属于每个\(A_n,N_∞=\phi\)这是常人一眼就看出的简单集论事实 】
elim,【没有自然数属于每个\(A_n\)】,并不等于每个\(A_n\)中就没有其它元素嘛!是的,这个事实是【常人一眼就可以看出的的简单事实】,但你不是常人嘛!有常人举办集合论入门知识讲座的吗?正如人人都知道“狗要吃屎”是事实,但人人末必知道你在用“狗要吃屎”的事实,论证“人必须吃屎”嘛!
elim为深入论证【\(N_∞=\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)】,提出了如下命题:【设 \(\Omega\) 为论域(例如 \(\mathbb{N},\mathbb{R},\mathbb{R}^n\) 等等)
【定理】\(\forall x\in\Omega\,(x\not\in B\subseteq\Omega)\implies B=\varnothing.\)
【证明】\(\forall x\in\Omega\,(x\not\in B\subseteq\Omega)\implies (\Omega\cap B=\varnothing)\wedge (B\subseteq\Omega)\)
\(\qquad\quad \implies B=B\cap\Omega=\varnothing.\)】
然而elim的这个定理并不自洽,且与现行教科书不相容。定理【\(\forall x\in\Omega\,(x\not\in B\subseteq\Omega)\implies B=\varnothing.\)】的结论\(B=\varnothing\)
未必成立。如\(\Omega=\mathbb{N}\),\(\mathscr{A}=\{x|x=2n^2,n∈\mathbb{N}\}\)就满足定理的题设\(\forall x\in\Omega\,(x\not\in B\subseteq\Omega)\)但\(\overline{\overline{\mathscr{A}}}=\overline{\overline{\mathbb{N}}}\)即\(\mathscr{A}≠\varnothing!\),也许elim会辩称,既然\(\mathscr{A}\subset\mathbb{N}\)那我\(\forall x∈\mathbb{N}\)中的x取\(2n^2\)不就得了?elim先生,这可不是\(\forall 2n^2 ∈\mathbb{N}\)而是\(\exists 2n^2∈\mathbb{N}\)了, 毕竟\(x≠2x^2\)嘛!也请elim注意满足\(\forall x\in\Omega\,(x\not\in B\nsubseteq\Omega)\)但的例子就更多了. 如令\(\Omega=\mathbb{N}\),\(\mathscr{B}=\{x|x=ni,n∈\mathbb{N},i^2=-1\}\)也满足\(\forall x\in\Omega\,(x\not\in B\)这个条件,但\(\mathscr{B}≠\phi\)!
elim先生,数学是研究形数关系的学科.它所揭示的规律与论者种的属性(如孬种、良种、野种、杂种)和职业(卖娼、卖淫)没有任何联系!用这些龌蹉下流的语言描述数学命题更不容于现行数学规范!切记鲁迅名言,辱骂和恐吓决非战斗! |
|