|
本帖最后由 denglongshan 于 2021-11-22 19:37 编辑
- \!\(\*OverscriptBox["i", "_"]\) = i = 0;
- \!\(\*OverscriptBox["m", "_"]\) = 1/m;
- a = (2 p m)/(m + p);
- \!\(\*OverscriptBox["a", "_"]\) = 2/(m + p); b = (2 p n)/(n + p);
- \!\(\*OverscriptBox["b", "_"]\) = 2/(n + p); c = (2 n m)/(n + m);
- \!\(\*OverscriptBox["c", "_"]\) = 2/(m + n);
- d = (a + c)/2;
- \!\(\*OverscriptBox["d", "_"]\) = (
- \!\(\*OverscriptBox["a", "_"]\) +
- \!\(\*OverscriptBox["c", "_"]\))/2; f = (a - \[Lambda] d)/(
- 1 - \[Lambda]);
- \!\(\*OverscriptBox["f", "_"]\) = (
- \!\(\*OverscriptBox["a", "_"]\) - \[Lambda]
- \!\(\*OverscriptBox["d", "_"]\))/(1 - \[Lambda]);(*假设
- \!\(\*OverscriptBox["FA", "\[RightVector]"]\):F
- \!\(\*OverscriptBox["D", "\[RightVector]"]\)=\[Lambda]*)
- k[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["k", "_"]\)[a_, b_] := 1/k[a, b];(*复斜率定义*)
- \!\(\*OverscriptBox["Jd", "_"]\)[k1_, a1_, k2_, a2_] := -((a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\) - (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
- (*复斜率等于k1,过点A1与复斜率等于k2,过点A2的直线交点*)
- Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\)) - k1 (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
- FourPoint[a_, b_, c_, d_] := ((
- \!\(\*OverscriptBox["c", "_"]\) d - c
- \!\(\*OverscriptBox["d", "_"]\)) (a - b) - (
- \!\(\*OverscriptBox["a", "_"]\) b - a
- \!\(\*OverscriptBox["b", "_"]\)) (c - d))/((a - b) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["d", "_"]\)) - (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) (c - d));
- (*过两点A和B、C和D的交点*)
- \!\(\*OverscriptBox["FourPoint", "_"]\)[a_, b_, c_, d_] := -(((c
- \!\(\*OverscriptBox["d", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\) d) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) - ( a
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) b) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["d", "_"]\)))/((a - b) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["d", "_"]\)) - (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) (c - d)));
- XiangjiaoxuanLianxin[o1_, a_, o2_, b_] := 1/(2 (
- \!\(\*OverscriptBox["o2", "_"]\) -
- \!\(\*OverscriptBox["o1", "_"]\))) (a
- \!\(\*OverscriptBox["a", "_"]\) - b
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\) o2 + b
- \!\(\*OverscriptBox["o2", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) o1 - a
- \!\(\*OverscriptBox["o1", "_"]\) +
- \!\(\*OverscriptBox["o2", "_"]\) o1 - o2
- \!\(\*OverscriptBox["o1", "_"]\));(*圆 (O1,A)与圆 (O2,B)连心线与公共弦的交点*)
- \!\(\*OverscriptBox["XiangjiaoxuanLianxin", "_"]\)[o1_, a_, o2_, b_] :=
- 1/(2 (o2 - o1)) (a
- \!\(\*OverscriptBox["a", "_"]\) - b
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\) o2 + b
- \!\(\*OverscriptBox["o2", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) o1 - a
- \!\(\*OverscriptBox["o1", "_"]\) + o2
- \!\(\*OverscriptBox["o1", "_"]\) -
- \!\(\*OverscriptBox["o2", "_"]\) o1);
- Chuizu[a_, b_, p_] := (
- \!\(\*OverscriptBox["a", "_"]\) b - a
- \!\(\*OverscriptBox["b", "_"]\) + p (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) +
- \!\(\*OverscriptBox["p", "_"]\) (a - b))/(2 (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)));(*=(1/2)[p+(
- \!\(\*OverscriptBox["a", "_"]\)b-a
- \!\(\*OverscriptBox["b", "_"]\)+
- \!\(\*OverscriptBox["p", "_"]\)(a-b))/(
- \!\(\*OverscriptBox["a", "_"]\)-
- \!\(\*OverscriptBox["b", "_"]\))]P到直线AB的垂足*)
- \!\(\*OverscriptBox["Chuizu", "_"]\)[a_, b_, p_] := (a
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) b +
- \!\(\*OverscriptBox["p", "_"]\) (a - b) + p (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)))/(2 (a - b));
- (*Duichendian[a_,b_,p_]:=(
- \!\(\*OverscriptBox["a", "_"]\)b-a
- \!\(\*OverscriptBox["b", "_"]\)+
- \!\(\*OverscriptBox["p", "_"]\)(a-b))/(
- \!\(\*OverscriptBox["a", "_"]\)-
- \!\(\*OverscriptBox["b", "_"]\));P关于直线AB的对称点
- \!\(\*OverscriptBox["Duichendian", "_"]\)[a_,b_,p_]:=(
- \!\(\*OverscriptBox["b", "_"]\)-
- \!\(\*OverscriptBox["a", "_"]\)b+
- \!\(\*OverscriptBox["p", "_"]\)(a-b))/(a-b);*)
- Wx[a_, b_, c_] := (a (-b + c)
- \!\(\*OverscriptBox["a", "_"]\) + b (a - c)
- \!\(\*OverscriptBox["b", "_"]\) + (-a + b) c
- \!\(\*OverscriptBox["c", "_"]\))/((-b + c)
- \!\(\*OverscriptBox["a", "_"]\) + (a - c)
- \!\(\*OverscriptBox["b", "_"]\) + (-a + b)
- \!\(\*OverscriptBox["c", "_"]\));
- \!\(\*OverscriptBox["Wx", "_"]\)[a_, b_, c_] := ((b - c)
- \!\(\*OverscriptBox["b", "_"]\)
- \!\(\*OverscriptBox["c", "_"]\) +
- \!\(\*OverscriptBox["a", "_"]\) ((a - b)
- \!\(\*OverscriptBox["b", "_"]\) + (-a + c)
- \!\(\*OverscriptBox["c", "_"]\)))/((-b + c)
- \!\(\*OverscriptBox["a", "_"]\) + (a - c)
- \!\(\*OverscriptBox["b", "_"]\) + (-a + b)
- \!\(\*OverscriptBox["c", "_"]\));
- e = Chuizu[i, b, a];
- \!\(\*OverscriptBox["e", "_"]\) =
- \!\(\*OverscriptBox["Chuizu", "_"]\)[i, b, a];
- j = Jd[k[e, f], e, -p n, d];
- \!\(\*OverscriptBox["j", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[k[e, f], e, -p n, d];
- o = Wx[d, e, f];
- \!\(\*OverscriptBox[
- StyleBox["o",
- FontSize->14], "_"]\) =
- \!\(\*OverscriptBox["Wx", "_"]\)[d, e, f]; k = p n (
- \!\(\*OverscriptBox["d", "_"]\) -
- \!\(\*OverscriptBox["o", "_"]\)) + o;
- \!\(\*OverscriptBox["k", "_"]\) = (d - o)/(p n) +
- \!\(\*OverscriptBox["o", "_"]\); q = Wx[j, k, f];
- \!\(\*OverscriptBox[
- StyleBox["q",
- FontSize->24], "_"]\) =
- \!\(\*OverscriptBox["Wx", "_"]\)[j, k, f];(*(d-o)/p n*)
- t = XiangjiaoxuanLianxin[q, f, i, m];
- \!\(\*OverscriptBox["t", "_"]\) =
- \!\(\*OverscriptBox["XiangjiaoxuanLianxin", "_"]\)[q, f, i, m];
- Simplify[{d,
- \!\(\*OverscriptBox["d", "_"]\), e,
- \!\(\*OverscriptBox["e", "_"]\), f,
- \!\(\*OverscriptBox["f", "_"]\), 1, j,
- \!\(\*OverscriptBox["j", "_"]\), o,
- \!\(\*OverscriptBox["o", "_"]\), k,
- \!\(\*OverscriptBox["k", "_"]\), 2, q,
- \!\(\*OverscriptBox["q", "_"]\), 3, t,
- \!\(\*OverscriptBox["t", "_"]\), , t
- \!\(\*OverscriptBox["t", "_"]\)}]
- Factor[{d,
- \!\(\*OverscriptBox["d", "_"]\), e,
- \!\(\*OverscriptBox["e", "_"]\), f,
- \!\(\*OverscriptBox["f", "_"]\), 1, j,
- \!\(\*OverscriptBox["j", "_"]\), o,
- \!\(\*OverscriptBox["o", "_"]\), k,
- \!\(\*OverscriptBox["k", "_"]\), 2, q,
- \!\(\*OverscriptBox["q", "_"]\), 3, t,
- \!\(\*OverscriptBox["t", "_"]\), , t
- \!\(\*OverscriptBox["t", "_"]\)}]
复制代码
再运行一次就不对了,不知道原因,Mathematica7.0版本 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
评分
-
查看全部评分
|