|
由\(\small A,\,B,\,C,\,D\,\)确定的Bézier曲线是指一多项式曲线\(\small\,(\deg\le 3)\)
\({\small\Gamma: f(x)=}\alpha x^3+\beta x^2+\gamma x+\eta\,\)使\(\small\,\overline{AB},\,\overline{CD}\,\)分别切\(\small\,\Gamma\)于\(\small A,\,D.\,\)令
\(\small A,B,C,D=(0,0),(1,4),(3,2),(4,0),\;\)则\({\small\,f(0)=0,\,}\frac{f(1)-f(0)}{1-0}\small=f'(0)\)
\(\therefore\;\eta=0,\,f'(0)=\gamma=4.\;\)同理
\(\,2=f'(4)(3-4)\implies(f'(4)=-2)\wedge(24\alpha+4\beta+3=0)\)
\(\therefore\;{\small\overline{CD}\subset\Gamma}:y=ax+b=-2(x-4)\;\small((a,b)=(-2,8))\)
进而\(\,24f(x)=-(4\beta+3)x^3+24\beta x^2+96x :=g(x),\)
\(0=24f(4)=g(4)=128\beta+192\implies\beta=-\frac{3}{2}\implies\)
\(\qquad\qquad\qquad\boxed{f(x)={\scriptsize\frac{1}{8}}\,x(x-4)(x-8)}\)
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|