数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1438316|回复: 9235

[原创]k生素数群的数量公式

  [复制链接]
发表于 2010-9-14 20:57 | 显示全部楼层 |阅读模式
本帖最后由 白新岭 于 2018-11-5 06:43 编辑

[watermark]当P是素数,而且P+2m1,P+2m2,...P+2m(k-1)也是素数时,称这一组数为k生素数群,这里的m1,m2,m3,....m(k-1)为不同的正整数,且一个比一个要大。谁都知道(P,P+2)为孪生素数对。我们可以把(P,P+2,P+6)或者(P,P+4,P+6)成为3生素数群;4生素数群为(P,P+2,P+6,P+8),仅此一种(指总间隔最短的4生素数群),也可以称为四胞胎素数群。一般k生素数群的数量与A*∫{1/[LN(n)]^k}d(n)式子联系密切,积分式取前边有限项即可,当阶乘函数值大于或等于LN(n)时截止,后边的项不在要。系数A可以通过分析求的。孪生素数对的系数为2倍的孪生素数常数;3生素数群的系数为:2.85824917688516 ;
5生素数群从素数7就走到正规了,系数为10.1318018169296 ;
7生素数群从素数11就走到正规了,系数为53.9720251184226 ;
4生素数群的系数在基础数学中有。6生的我计算后给出。
有编程能力的网友可以验证它是否正确。[/watermark]
这里所说k生素数群是指最密的k生素数群(前后两个素数的差值最小)。

系数A=P^(K-1)*(p-K)/(P-1)^K的连乘积=(1-k/P)/(1-1/P)^K的连乘积,只是(P-K)及(1-k/P)中的k在2p<=K生素数的总间距时,k值需要分析获得,当2P>K生素数的总间距d时,这时的k值就是k生素数的k值了。
发表于 2021-11-7 12:17 | 显示全部楼层
mod(n,15)        120at^5        120bt^4        120ct^3        120dt^2        120et        6f        10周
1→→→        17970        -44370        70950        -88110        63000        -972        11800413
2→→→        17865        -37320        59475        -75360        51180        -792        12214458
3→→→        17713        -31335        54285        -75105        49562        -756        12543375
4→→→        17496        -25860        50040        -74580        48024        -756        12783726
5→→→        17253        -20775        44505        -65625        35442        -540        12965301
6→→→        17091        -16570        39845        -55310        19384        -216        13149196
7→→→        17001        -12945        36645        -47535        8274        -36        13355196
8→→→        16953        -8610        31635        -38730        1272        0        13641456
9→→→        17000        -3620        25300        -27460        -4380        -6        14052584
10→→→        17157        1590        22815        -20130        -6312        -36        14602818
11→→→        17370        7590        24030        -18030        -2520        -90        15292500
12→→→        17565        14740        26955        -12880        660        -120        16079760
13→→→        17757        22575        33045        -2775        318        -90        16951824
14→→→        17940        30240        43680        8820        1560        -36        17841474
15→→0同        18013        37865        58085        21895        5862        -6        18669025
一周汇总        262144        -86805        621290        -570915        271326        -4452        215943106
x+y+z+u+v+w=N                的正整数        解组数,        及系数        a,b,c,d,e,f                的值

评分

参与人数 2威望 +40 收起 理由
独舟星海 + 20 理清一种解决问题的方法很重要!
白新岭 + 20 对15抽8做了详细分析

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-2-5 09:28 | 显示全部楼层
假定对于任意素数 q , n个整数 0,a1,…,an-1 属于模 q 的剩余类个数皆小于q, 那末,上述 n 生素数组便有无穷多。这一猜想叫 n 生素数猜想。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-11-28 23:04 | 显示全部楼层
项目        系数        表达式
Pi2(n)        1.320323721180720         (P,P+2)
Pi3(n)        2.858249176885160         (P,P+2,P+6)
Pi3(n)        2.858249176885160         (P,P+4,P+6)
Pi4(n)        4.151182551346270         (P,P+2,P+6,P+8)
Pi5(n)        10.131801816929600         (P,P+2,P+6,P+8,P+12)
Pi5(n)        10.131801816929600         (P,P+4,P+6,P+10,P+12)
Pi6(n)        17.298629898083500         (P,P+4,P+6,P+10,P+12,P+16)
Pi7(n)        53.972025118422600         (P,P+2,P+8,P+12,P+14,P+18,P+20)
Pi7(n)        53.972025118422600         (P,P+2,P+6,P+8,P+12,P+18,P+20)
Pi8(n)        178.262292689810000         (P,P+2,P+6,P+8,P+12,P+18,P+20,P+26)
Pi8(n)        475.366113839494000         (P,P+2,P+6,P+12,P+14,P+20,P+24,P+26)
Pi8(n)        178.262292689810000         (P,P+6,P+8,P+14,P+18,P+20,P+24,P+26)
Pi9(n)        630.065899972291000         (P,P+2,P+6,P+8,P+12,P+18,P+20,P+26,P+30)
Pi9(n)        1260.131799944580000         (P,P+2,P+6,P+12,P+14,P+20,P+24,P+26,P+30)
Pi9(n)        1260.131799944580000         (P,P+4,P+6,P+10,P+16,P+18,P+24,P+28,P+30)
Pi9(n)        630.065899972291000         (P,P+4,P+10,P+12,P+18,P+22,P+24,P+28,P+30)
Pi10(n)        1704.746139533830000         (P,P+2,P+6,P+12,P+14,P+20,P+24,P+26,P+30,P+32)
Pi10(n)        1704.746139533830000         (P,P+2,P+6,P+8,P+12,P+18,P+20,P+26,P+30,P+32)
Pi11(n)        3062.090740849730000         (P,P+4,P+6,P+10,P+16,P+18,P+24,P+28,P+30,P+34,P+36)
Pi11(n)        3062.090740849730000         (P,P+2,P+6,P+8,P+12,P+18,P+20,P+26,P+30,P+32,P+36)
Pi12(n)        9931.360070943380000         (P,P+2,P+6,P+8,P+12,P+18,P+20,P+26,P+30,P+32,P+36,P+42)
Pi12(n)        9931.360070943380000         (P,P+6,P+10,P+12,P+16,P+22,P+24,P+30,P+34,P+36,P+40,P+42)
               
项目        系数        表达式
Pi2(n)        "1.320323632296412000        0,2
Pi3(n)        "2.858248596413687000        0,2,6
Pi3(n)        "2.858248596413687000        0,4,6
Pi4(n)        "4.151180864451276000        0,2,6,8
Pi5(n)        "10.13179495466646000        0,2,6,8,12
Pi5(n)        "10.13179495466646000        0,4,6,10,12
Pi6(n)        "17.29861232374961000        0,4,6,10,12,16
Pi7(n)        "53.97194835235760000        0,2,8,12,14,18,20
Pi7(n)        "53.97194835235760000        0,2,6,8,12,18,20
Pi8(n)        "178.2619546267298000        0,2,6,8,12,18,20,26
Pi8(n)        "475.3652123379470000        0,2,6,12,14,20,24,26
Pi8(n)        "178.2619546267298000        0,6,8,14,18,20,24,26
Pi9(n)        "630.0643637008561000        0,2,6,8,12,18,20,26,30
Pi9(n)        "1260.128727401712200        0,2,6,12,14,20,24,26,30
Pi9(n)        "1260.128727401712200        0,4,6,10,16,18,24,28,30
Pi9(n)        "630.0643637008561000        0,4,10,12,18,22,24,28,30
Pi10(n)        "1704.740943731160000        0,2,6,12,14,20,24,26,30,32
Pi10(n)        "1704.740943731160000        0,2,6,8,12,18,20,26,30,32
Pi11(n)        "3062.079334123856000        0,4,6,10,16,18,24,28,30,34,36
Pi11(n)        "3062.079334123856000        0,2,6,8,12,18,20,26,30,32,36
Pi12(n)        "9931.315676105654000        0,2,6,8,12,18,20,26,30,32,36,42
Pi12(n)        "9931.315676105654000        0,6,10,12,16,22,24,30,34,36,40,42

点评

后边给出的系数精确度比较高,用vfp计算到10亿的位置,早点给的系数是用Excel软件手工计算到1000万的位置。  发表于 2023-7-19 22:42
有可能Pi10(n)="1704.740943731160000 0,2,6,8,12,18,20,26,30,32是错误的,系数还小。因为孪串5与其接近,但是比值不是有理数。  发表于 2023-7-13 22:23
系数更新了,下层的系数更精确,计算到10亿位置。以前,只是Excel计算到1千万级别,差距太大。  发表于 2022-11-28 23:13
回复 支持 反对

使用道具 举报

 楼主| 发表于 2010-9-14 22:34 | 显示全部楼层

[原创]k生素数群的数量公式

本帖最后由 白新岭 于 2021-4-16 11:32 编辑

项目→→→→系数→→→→→→→→→→排列结构
Pi2(n)→→1.32032372118072 →→(P,P+2)
Pi3(n)→→2.8582491768851600 →→(P,P+2,P+6)
Pi3(n)→→2.8582491768851600 →→(P,P+4,P+6)
Pi4(n)→→4.1511825513462700 →→(P,P+2,P+6,P+8)
Pi5(n)→→10.1318018169296000 →→(P,P+2,P+6,P+8,P+12)
Pi5(n)→→10.1318018169296000 →→(P,P+4,P+6,P+10,P+12)
Pi6(n)→→17.2986298980835000 →→(P,P+4,P+6,P+10,P+12,P+16)
Pi7(n)→→53.9720251184226000 →→(P,P+2,P+8,P+12,P+14,P+18,P+20)
Pi7(n)→→53.9720251184226000 →→(P,P+2,P+6,P+8,P+12,P+18,P+20)
Pi8(n)→→178.26229268981000 →→(P,P+2,P+6,P+8,P+12,P+18,P+20,P+26)
Pi8(n)→→475.36611383949400 →→(P,P+2,P+6,P+12,P+14,P+20,P+24,P+26)
Pi8(n)→→178.26229268981000 →→(P,P+6,P+8,P+14,P+18,P+20,P+24,P+26)
k生素数的数量公式:主贴已有,关键是k生素数式(的给出),然后求其系数,就可以得到比较精确的公式解了。与真值的比值可以无限制向1靠近,误差率也会无限制向0靠近。今天这不是我要表达的重点,重点是给出k生素数的数量取值范围,即区间:如果用\(G_k\)(N)表示k生素数的数量,则系数(C)*N*(\(1\over (ln(N))^k\)+\(k\over{(ln(N))^{k+1}}\))<\(G_k\)(N)<系数(C)*N*(\(1\over (ln(N))^k\)+\(k\over{(ln(N))^{k+1}}\)+\(2k(k+1)\over{(ln(N))^{k+2}}\))
当范围值是\(10^{k+10}\)时,无反例出现
如果用G4-8表示最密4生素数的数量,则其中项和合成数的数量公式为:
\(210\over9\)∏(1-\(16\over{(P-4)^2}\))∏\({P_i-4}\over{P_i-8}\)∏\({P_j-6}\over{P_j-8}\)∏\({P_k-7}\over{P_k-8}\)*\((G4-8)^2\over N\),P取大于7的所有素数,\(P_i\)整除被合成数;合成数除\(P_j\)余数为±2或者±6;合成数除\(P_k\)余数为±4或者±8。
如果用\(G_2 (N)\)表示孪生素数对的数量,用\(G_3 (N)\)表示最密3生素数的数量,用\(G_4 (N)\)表示最密4生素数的数量,用\(G_{2L8}(N)\)表示相邻二生素数(P,P+8)的数量(在P与(P+8)之间无其它素数)。则:\(G_{2L8}(N)\)=\(G_2 (N)\)-2\(G_3 (N)\)+\(G_4 (N)\)
存在等差k生素数公差d最小值使它中的素数之和遍历偶数
http://www.mathchina.com/bbs/for ... 5&fromuid=37263
(出处: 数学中国)
上边的链接有关于等差k生素数的中项(或同一位置上的)数和遍历全体偶数的一些相关分析。等差4生素数(P,P+30,P+60,P+90)并不能遍历全体偶数(这是给有心人埋的伏笔)。
存在任意长度的素数差的等比数列且公比为任意正整数及其倒数
http://www.mathchina.com/bbs/for ... 8&fromuid=37263
(出处: 数学中国)
本链接是关于素数差形成等比数列的问题,谈到了,首项值,及什么值可以做公比,一切除0的自然数及其倒数都可以做为公比,当公比是1时,就形成了等差k生素数。
哈代-李特伍尔德给出了哥德巴赫猜想的猜想公式(这是关于二素数之和的分布公式),现在我给出二素数差的公式(关于二素数差是同一个值的分布情况),由于二素数差的本身特性,决定它的计算精度优越于哈代-李特伍尔德给出的有关哥德巴赫猜想的公式(只是数值的接近真实值的程度上,理论上大相径庭,因为哈代-李特伍尔德给的公式是用高深莫测的圆法获得,而我的仅仅是是用数论的初步知识,结合二元运算和群论给出的,方法不在这里叙述,也不公布)。
用\(G_2 (2m)\)表示二素差值等于2m的数量则:2\(C_2\)∏\({P_i-1}\over {P_i-2}\) \({N-2m}\over(ln(N-2m))^2\),\(P_i\)整除2m
相邻k生素数数量公式及包含的其它k生素数
http://www.mathchina.com/bbs/for ... 9&fromuid=37263
(出处: 数学中国)
这是有关相邻k生素数数量的分析与探讨。
等差4生素数中项的合成分布
http://www.mathchina.com/bbs/for ... 7&fromuid=37263
(出处: 数学中国)
这是一个关于等差4生素数的中项和分布问题专区。
最密2生素数的中项和中(即孪生素数对的中项和,或者二生素数(P,P+4)的中项和中),合成方法与余数类目关系恒等:
\((P-2)^2\)=1*(P-2)+2*(P-3)+(P-3)*(P-4),P≥5.

3生素数有两种形式,一种是(P,P+2,P+6),另一种是(P,P+4,P+6),这里的三生素数是第一种形式,中项即P+3.其公式D3中(N)=17.2986185466273*∏\({P_i-4}\over{P_i-6}\)∏\({P_j-5}\over{P_j-6}\)*\(N\over(ln(N))^6\),\(P_i\)≥7,N≡-2,0,4mod\(P_i\);\(P_j\)≥7,N≡-6,2,6mod\(P_j\);当N≡4MOD5时,还需要乘2.
一个孪生素数对中项合成数(6n)的一种公式:\(G_2\)(6n)=6∏(1-\(4\over(P-2)^2\))∏\({P_i-2}\over{P_i-4}\)∏\({P_j-3}\over{P_j-4}\)\((孪生素数对数量)^2\over{6n}\),\(P_i\)整除6n,6n除\(P_j\)的余数为±2.
Hardy-Littlewood为搜索做准备。
对于线性不定方程的正整数解的问题:\(X_1\)+\(X_2\)+\(X_3\)+\(X_4\)+\(X_5\)+\(X_6\)+......+\(X_m\)=N,
我们可以用高中学过的排列组合学来解决。用插入挡板法,对于排列好的一组物体(可以是任何的实物,比方用乒乓球),共计N个物体,现在我们拿来m-1个挡板,这N个物体之间有N-1个空隙,我们把这m-1块挡板放到N-1个空隙中去,就把这N个物体分成了m块区域,有前后顺序的m块区域,安前后顺序分别对应着\(X_i\),正好对应着每个未知数,所以这种放挡板的方法数就是线性不定方程正整数的解组数。即为:\(C_{N-1}^{m-1}\).
我的签名中除(m-1)!也是来源于此。
【成功】需要高人指点,贵人相助,小人监督,个人奋斗。

点评

一部不错的知识储备!  发表于 2022-6-28 18:58
k生素数的数量公式:(英文中称:k元组)对应系数*\(∫_2^n{d_n\over{{LN}^k(n)}}\),每种k生素数的系数要对应求出。  发表于 2021-9-24 17:49
虽然公式,系数,写了一大堆,可有几个人有疑问的,连疑问也没有,还想在素数问题上有建树,那可能吗?  发表于 2021-9-20 11:33
2对三生素数的中项差合成数的数量公式,前公共系数(即最小系数,其他系数可在此基础上调整):\({105}\over4^2\)∏\({P(P-6)}\over(P-3)^2\),P≥11,是素数,趋于∞。  发表于 2021-9-6 06:25
三生素数中项和合成方法与余数类目关系恒等式:\((P-3)^2=3*(P-4)+3*(P-5)+(P-6)*(P-6)\)=\(3*(P-4)+3*(P-5)+(P-6)^2\)  发表于 2021-9-5 20:24

评分

参与人数 1威望 +10 收起 理由
独舟星海 + 10 本楼汇集了楼主的知识点

查看全部评分

 楼主| 发表于 2010-9-14 22:40 | 显示全部楼层

[原创]k生素数群的数量公式

Table of PI_X(10^n)( 2 <= X <= 7, 8 < n < 17)
__________________________________________________________________________________________________
|   x   |  PI2(x)  t2(s) | PI3(x)   t3(s) |PI4(x) t4(s) |PI5(x)    t5(s)| PI6(x) t6(s)| PI7(X)  t(7)
---------------------------------------------------------------------------------------------------
| 10^09 |3424506     0.75|379508      0.55|28388   0.22 |3633       0.19|317      0.09| 54
|       |            0.25|379748      0.17|        0.08 |3588           |         0.03| 49
----------------------------------------------------------------------------------------------------
| 10^10 |27412679    7.24|2713347     4.63|180529  1.64 |20203      1.28|1613     0.55| 234
|       |            2.37|2712226     1.56|        0.58 |20211      0.53|         0.17| 239 0.17
---------------------------------------------------------------------------------------------------
| 10^11 |224376048    112|20093124    64.7|1209318 19.3 |122457    12.95|8626    4.34|1183
|       |            26.3|20081601    17.9|        6.15 |122855     3.91|         1.50|1152 1.22
----------------------------------------------------------------------------------------------------
| 10^12 |1870585220  1005|152850135    580|8398278 186. |776237    117.2|50408   40.51|6056
|       |             255|152839134    156|        53.5 |775986     34.1|         12.4|5913  10.2
----------------------------------------------------------------------------------------------------
| 10^13 |15834664872     |1189795268      |60069713 2324|5108291        |303828    440|33395
|       |            4369|1189826966  2304|+877      685|5109269     381|          132|33066 102
----------------------------------------------------------------------------------------------------
| 10^14 |135780321665    |9443942337      |441296836    |34709176       |1911246      |193078
|       |           35694|9443899421 20344|         6440|34701400   3750|         1304|192731 988
----------------------------------------------------------------------------------------------------
| 10^15 |1177209242304   |76222348070  (x)|3314576487   |242554539      |12431996     |1167688 +24
|       |                |                |+8790   96564|242526656 50564|+133    16116|1166385 +26 10563
----------------------------------------------------------------------------------------------------
| 10^16 |10304195697298  |                |25379433651  |               |83217782     |
|       |          3000h |                |             |               |       216236|
----------------------------------------------------------------------------------------------------
| 10^17 |                |                |             |               |482142192 (x)|
|       |                |                |             |               |+1170 3556211|
----------------------------------------------------------------------------------------------------
prime 4-tuples(10 ^ 16) = 25379433651,          time use 340h
prime 6-tuples(10 ^ 16) = 82942101 + 1170,      time use 55.01h
prime 6-tuples(10 ^ 15) = 12431996 + 133,       time use 16116.41s
prime 4-tuples(10 ^ 14) = 441295937+ 899,       time use 6439.90s
prime 4-tuples(10 ^ 15) = 3314576487,           time use 96563.25s
prime 2-tuples(10 ^ 14) = 135780262685 + 58980, time use 35693.32s
prime 8-tuples(10 ^ 15) = 116493,               time use 8427.10s // one of the patterns
这是数学研发论坛上一位网友提供的数据

点评

我查询0xFFFFFFEF的意义时,注意到一个人在文章中说到他们的高中数学老师的一句话:一看就会,一做就错。真是奇葩!  发表于 2021-9-20 11:30
二生素数(P,P+2k)的中项差或和合成数的数量公式中公共系数(即系数最小值,其他系数都可以由它或得):6∏\({P(P-4)}\over(P-2)^2\)=6*0.396880363867201=2.38128218320321。  发表于 2021-9-4 14:55
一切二生素数(P,P+2m)的数量公式:令x=2n-2m(2n是范围值,2m是二生素数的间距),2\(C_2\)∏\({P_i-1}\over{P_i-2}\)\(∫_2^x{d_x\over{ln}^2(x)}\), 0≡2m |\(P_i\). \(C_2\)是孪生素数常数.  发表于 2021-9-4 12:11
数学研发论坛,我看资料受限  发表于 2021-7-12 20:02
在数学研发论坛搜索:tprime即可,他是原创者。  发表于 2021-7-9 07:51
 楼主| 发表于 2010-9-16 16:34 | 显示全部楼层

[原创]k生素数群的数量公式

10^n││5生素数数量
8││681
9││3585
10││20372
11││122828
12││776669
13││5107218
14││34706119
15││242545119
16││1736514735
17││12697644704
18││94586697962
19││7.16292E+11
20││5.50479E+12
21││4.28683E+13
22││3.37851E+14
23││2.69172E+15
24││2.16591E+16
25││1.7587E+17
26││1.44003E+18
27││1.18821E+19
28││9.87449E+19
29││8.26057E+20
30││6.95314E+21
31││5.88639E+22
32││5.01017E+23
33││4.28592E+24
34││3.68377E+25
35││3.18036E+26
36││2.7573E+27
37││2.40001E+28
38││2.09688E+29
39││1.83855E+30
40││1.61749E+31
41││1.42758E+32
42││1.26381E+33
43││1.12208E+34
44││9.98998E+34
45││8.91771E+35
46││7.98064E+36
47││7.1593E+37
48││6.43734E+38
49││5.80101E+39
50││5.2387E+40
51││4.74055E+41
52││4.29818E+42
53││3.90444E+43
54││3.5532E+44
55││3.2392E+45
56││2.95793E+46
57││2.70546E+47
58││2.47841E+48
59││2.27385E+49
60││2.08923E+50
61││1.9223E+51
62││1.77113E+52
63││1.634E+53
64││1.50941E+54
65││1.39606E+55
66││1.29277E+56
以上是5生素数的近似组数(其中一种,5生素数有两种排列顺序,在2楼已经写出)

点评

[原创]任何含素数因子P的偶数类的素数对 http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=24111&fromuid=148388 (出处: 数学中国) 此贴第8楼是歌猜证明之根本  发表于 2021-10-9 11:16
白新岭 先生提供的数据不错,要是能注明实际值,理论值,就更上一层楼了  发表于 2021-7-6 21:56
 楼主| 发表于 2010-9-16 17:01 | 显示全部楼层

[原创]k生素数群的数量公式

10^n││5生素数数量││6生素数数量││7生素数数量
8││681││70││13
9││3585││319││52
10││20372││1611││234
11││122828││8753││1145
12││776669││50400││5995
13││5107218││304356││33222
14││34706119││1912615││192970
15││242545119││12433000││1166417
16││1736514735││83213875││7296237
17││12697644704││571290926││47021237
18││94586697962││4010801182││311077956
19││7.16292E+11││28722154081││2106339586
20││5.50479E+12││2.0936E+11││14560885311
21││4.28683E+13││1.55053E+12││1.02549E+11
22││3.37851E+14││1.16497E+13││7.34476E+11
23││2.69172E+15││8.86781E+13││5.34138E+12
24││2.16591E+16││6.83113E+14││3.93891E+13
25││1.7587E+17││5.31996E+15││2.94196E+14
26││1.44003E+18││4.18486E+16││2.22325E+15
27││1.18821E+19││3.32256E+17││1.69838E+16
28││9.87449E+19││2.66064E+18││1.31047E+17
29││8.26057E+20││2.14759E+19││1.02059E+18
30││6.95314E+21││1.74635E+20││8.01737E+18
31││5.88639E+22││1.42992E+21││6.34912E+19
32││5.01017E+23││1.1784E+22││5.06605E+20
33││4.28592E+24││9.77027E+22││4.07094E+21
34││3.68377E+25││8.14681E+23││3.29309E+22
35││3.18036E+26││6.82956E+24││2.68055E+23
36││2.7573E+27││5.75423E+25││2.19483E+24
37││2.40001E+28││4.87137E+26││1.80715E+25
38││2.09688E+29││4.14258E+27││1.49579E+26
39││1.83855E+30││3.53788E+28││1.24425E+27
40││1.61749E+31││3.03371E+29││1.03992E+28
41││1.42758E+32││2.6114E+30││8.73049E+28
42││1.26381E+33││2.25612E+31││7.36092E+29
43││1.12208E+34││1.95598E+32││6.23148E+30
44││9.98998E+34││1.70141E+33││5.29582E+31
45││8.91771E+35││1.48466E+34││4.51733E+32
46││7.98064E+36││1.29946E+35││3.86693E+33
47││7.1593E+37││1.14066E+36││3.32138E+34
48││6.43734E+38││1.00405E+37││2.86204E+35
49││5.80101E+39││8.86148E+37││2.47389E+36
50││5.2387E+40││7.84089E+38││2.14475E+37
51││4.74055E+41││6.95484E+39││1.86472E+38
52││4.29818E+42││6.18344E+40││1.62571E+39
53││3.90444E+43││5.51004E+41││1.42107E+40
54││3.5532E+44││4.92067E+42││1.24535E+41
55││3.2392E+45││4.40355E+43││1.09403E+42
56││2.95793E+46││3.94874E+44││9.63366E+42
57││2.70546E+47││3.5478E+45││8.50235E+43
58││2.47841E+48││3.19357E+46││7.52035E+44
59││2.27385E+49││2.87992E+47││6.66585E+45
60││2.08923E+50││2.60163E+48││5.92054E+46
61││1.9223E+51││2.35421E+49││5.26897E+47
62││1.77113E+52││2.13381E+50││4.69807E+48
63││1.634E+53││1.93712E+51││4.19678E+49
64││1.50941E+54││1.76126E+52││3.7557E+50
65││1.39606E+55││1.60374E+53││3.36682E+51
66││1.29277E+56││1.46242E+54││3.02328E+52
 楼主| 发表于 2010-9-24 07:51 | 显示全部楼层

[原创]k生素数群的数量公式

项目→→→→系数→→→→→→→→→→排列结构
Pi2(n)→→1.32032372118072 →→(P,P+2)
Pi3(n)→→2.8582491768851600 →→(P,P+2,P+6)
Pi3(n)→→2.8582491768851600 →→(P,P+4,P+6)
Pi4(n)→→4.1511825513462700 →→(P,P+2,P+6,P+8)
Pi5(n)→→10.1318018169296000 →→(P,P+2,P+6,P+8,P+12)
Pi5(n)→→10.1318018169296000 →→(P,P+4,P+6,P+10,P+12)
Pi6(n)→→17.2986298980835000 →→(P,P+4,P+6,P+10,P+12,P+16)
Pi7(n)→→53.9720251184226000 →→(P,P+2,P+8,P+12,P+14,P+18,P+20)
Pi7(n)→→53.9720251184226000 →→(P,P+2,P+6,P+8,P+12,P+18,P+20)
Pi8(n)→→178.26229268981000 →→(P,P+2,P+6,P+8,P+12,P+18,P+20,P+26)
Pi8(n)→→475.36611383949400 →→(P,P+2,P+6,P+12,P+14,P+20,P+24,P+26)
Pi8(n)→→178.26229268981000 →→(P,P+6,P+8,P+14,P+18,P+20,P+24,P+26)
Pi9(n)→→630.06589997229100 →→(P,P+2,P+6,P+8,P+12,P+18,P+20,P+26,P+30)
Pi9(n)→→1260.13179994458000 →→(P,P+2,P+6,P+12,P+14,P+20,P+24,P+26,P+30)
Pi9(n)→→1260.13179994458000 →→(P,P+4,P+6,P+10,P+16,P+18,P+24,P+28,P+30)
Pi9(n)→→630.06589997229100 →→(P,P+4,P+10,P+12,P+18,P+22,P+24,P+28,P+30)
Pi10(n)→→1704.74613953383000 →→(P,P+2,P+6,P+12,P+14,P+20,P+24,P+26,P+30,P+32)
Pi10(n)→→1704.74613953383000 →→(P,P+2,P+6,P+8,P+12,P+18,P+20,P+26,P+30,P+32)
Pi11(n)→→3062.09074084973000 →→(P,P+4,P+6,P+10,P+16,P+18,P+24,P+28,P+30,P+34,P+36)
Pi11(n)→→3062.09074084973000 →→(P,P+2,P+6,P+8,P+12,P+18,P+20,P+26,P+30,P+32,P+36)
Pi12(n)→→9931.36007094338000 →→(P,P+2,P+6,P+8,P+12,P+18,P+20,P+26,P+30,P+32,P+36,P+42)
Pi12(n)→→9931.36007094338000 →→(P,P+6,P+10,P+12,P+16,P+22,P+24,P+30,P+34,P+36,P+40,P+42)

点评

现在有了梅滕斯推广公式的常数\(C_n\)前100项的值了,过后比对一下,应该全部一致(除精确度略有差异外,因为以前只计算到千万值大小位置,而后者计算到10亿位置,自然有差别)。  发表于 2021-9-14 07:38
 楼主| 发表于 2010-9-24 07:52 | 显示全部楼层

[原创]k生素数群的数量公式

10^n││2生素数数量││3生素数数量││4生素数数量
8││440365││55482││4722
9││3425306││379794││28384
10││27411416││2715284││181063
11││224368877││20089649││1209944
12││1870559991││152830589││8394569
13││15834599375││1189763338││60075450
14││135780274095 ││9443892325││441290899
15││1177208571645 ││76217795487││3314551625
16││10304193252876 ││6.24025E+11││25379451643
17││90948839425186 ││5.17369E+12││1.97622E+11
18││808675956302870 ││4.33714E+13││1.56177E+12
19││7.23752E+15││3.67176E+14││1.25056E+13
20││6.51543E+16││3.13588E+15││1.01319E+14
21││5.8963E+17││2.69947E+16││8.29588E+14
22││5.36144E+18││2.34045E+17││6.85773E+15
23││4.89622E+19││2.0424E+18││5.71827E+16
24││4.48905E+20││1.79291E+19││4.80603E+17
25││4.13065E+21││1.58246E+20││4.06873E+18
26││3.81354E+22││1.40372E+21││3.46759E+19
27││3.5316E+23││1.25091E+22││2.97351E+20
28││3.27981E+24││1.11952E+23││2.56441E+21
29││3.05403E+25││1.0059E+24││2.22332E+22
30││2.85079E+26││9.07153E+24││1.93711E+23
31││2.66719E+27││8.20924E+25││1.69552E+24
32││2.50077E+28││7.45288E+26││1.49046E+25
33││2.34946E+29││6.78668E+27││1.31548E+26
34││2.21148E+30││6.19758E+28││1.16545E+27
35││2.08531E+31││5.67475E+29││1.03622E+28
36││1.96964E+32││5.20912E+30││9.24412E+28
37││1.86334E+33││4.79308E+31││8.2729E+29
38││1.76541E+34││4.42019E+32││7.42596E+30
39││1.67501E+35││4.08501E+33││6.68469E+31
40││1.59138E+36││3.78288E+34││6.03367E+32
41││1.51386E+37││3.50983E+35││5.46001E+33
42││1.44187E+38││3.26244E+36││4.95295E+34
43││1.37489E+39││3.03777E+37││4.50341E+35
44││1.31248E+40││2.83326E+38││4.10374E+36
45││1.25422E+41││2.64671E+39││3.74745E+37
46││1.19976E+42││2.47619E+40││3.429E+38
47││1.14877E+43││2.32E+41││3.14367E+39
48││1.10096E+44││2.17668E+42││2.88742E+40
49││1.05608E+45││2.04493E+43││2.65675E+41
50││1.01389E+46││1.9236E+44││2.44867E+42
51││9.74171E+46││1.81169E+45││2.26056E+43
52││9.36746E+47││1.70829E+46││2.09018E+44
53││9.01436E+48││1.61261E+47││1.93556E+45
54││8.68086E+49││1.52394E+48││1.79497E+46
55││8.36554E+50││1.44166E+49││1.66692E+47
56││8.06709E+51││1.3652E+50││1.55009E+48
57││7.78433E+52││1.29405E+51││1.44331E+49
58││7.51618E+53││1.22776E+52││1.34558E+50
59││7.26165E+54││1.16592E+53││1.25598E+51
60││7.01984E+55││1.10817E+54││1.17371E+52
61││6.78991E+56││1.05417E+55││1.09807E+53
62││6.57109E+57││1.00362E+56││1.02843E+54
63││6.36268E+58││9.56252E+56││9.64226E+54
64││6.16404E+59││9.1182E+57││9.04953E+55
65││5.97455E+60││8.70098E+58││8.50166E+56
66││5.79367E+61││8.30883E+59││7.99462E+57

点评

白新岭 先生:你的孪生素数10^8处,是440365,但实际值是440312,另外给出了10^66处的值,所以你给出的应该是你的理论值,最好注明是理论值,最好能给出应该的实际值,才好比较你的精度  发表于 2021-7-3 22:53
白新岭 先生:这里从10^8提供数据,能不能提供10^2到10^7的数据?谢谢!  发表于 2021-7-3 22:41
 楼主| 发表于 2010-9-24 07:53 | 显示全部楼层

[原创]k生素数群的数量公式

10^n││8生素数数量││8生素数数量││9生素数数量││9生素数数量
8││3││7││1││1
9││9││25││2││3
10││36││97││6││12
11││159││425││24││48
12││758││2020││103││206
13││3849││10264││479││957
14││20653││55075││2371││4742
15││116037││309431││12376││24752
16││678171││1808457││67558││135116
17││4101786││10938095││383389││766777
18││25566765││68178041││2251055││4502110
19││163662705││436433879││13621011││27242023
20││1072864137││2860971031││84661816││169323632
21││7184652904││19159074411││539043103││1078086205
22││49049400344││1.30798E+11││3507502810││7015005620
23││3.40765E+11││9.08708E+11││23277483146││46554966291
24││2.40548E+12││6.4146E+12││1.57282E+11││3.14565E+11
25││1.72301E+13││4.59468E+13││1.08036E+12││2.16072E+12
26││1.25083E+14││3.33555E+14││7.53399E+12││1.5068E+13
27││9.19361E+14││2.45163E+15││5.32765E+13││1.06553E+14
28││6.83511E+15││1.8227E+16││3.81636E+14││7.63271E+14
29││5.13594E+16││1.36958E+17││2.76668E+15││5.53337E+15
30││3.89752E+17││1.03934E+18││2.02818E+16││4.05636E+16
31││2.98513E+18││7.96034E+18││1.50233E+17││3.00466E+17
32││2.30613E+19││6.14968E+19││1.12368E+18││2.24736E+18
33││1.79604E+20││4.78943E+20││8.4815E+18││1.6963E+19
34││1.40943E+21││3.75849E+21││6.45676E+19││1.29135E+20
35││1.11397E+22││2.9706E+22││4.95507E+20││9.91013E+20
36││8.864E+22││2.36373E+23││3.83156E+21││7.66313E+21
37││7.09816E+23││1.89284E+24││2.98408E+22││5.96817E+22
38││5.71838E+24││1.5249E+25││2.33984E+23││4.67967E+23
39││4.63312E+25││1.2355E+26││1.84648E+24││3.69296E+24
40││3.77417E+26││1.00644E+27││1.46603E+25││2.93207E+25
41││3.09027E+27││8.24073E+27││1.17072E+26││2.34143E+26
42││2.54268E+28││6.78049E+28││9.40039E+26││1.88008E+27
43││2.10187E+29││5.60499E+29││7.58772E+27││1.51754E+28
44││1.7452E+30││4.65386E+30││6.15521E+28││1.23104E+29
45││1.45519E+31││3.8805E+31││5.01697E+29││1.00339E+30
46││1.21829E+32││3.24876E+32││4.10786E+30││8.21571E+30
47││1.0239E+33││2.7304E+33││3.37814E+31││6.75629E+31
48││8.6372E+33││2.30325E+34││2.78965E+32││5.57929E+32
49││7.31187E+34││1.94983E+35││2.31288E+33││4.62576E+33
50││6.21099E+35││1.65626E+36││1.92495E+34││3.8499E+34
51││5.29311E+36││1.4115E+37││1.60798E+35││3.21597E+35
52││4.52505E+37││1.20668E+38││1.34796E+36││2.69592E+36
53││3.88012E+38││1.0347E+39││1.13382E+37││2.26764E+37
54││3.33678E+39││8.89808E+39││9.56823E+37││1.91365E+38
55││2.87755E+40││7.67347E+40││8.09998E+38││1.62E+39
56││2.48822E+41││6.63525E+41││6.87783E+39││1.37557E+40
57││2.15715E+42││5.75241E+42││5.85718E+40││1.17144E+41
58││1.87483E+43││4.99954E+43││5.00207E+41││1.00041E+42
59││1.6334E+44││4.35573E+44││4.28344E+42││8.56688E+42
60││1.42639E+45││3.80371E+45││3.67771E+43││7.35542E+43
61││1.24843E+46││3.32915E+46││3.16567E+44││6.33134E+44
62││1.09507E+47││2.92018E+47││2.73163E+45││5.46326E+45
63││9.62574E+47││2.56686E+48││2.36271E+46││4.72543E+46
64││8.47845E+48││2.26092E+49││2.04833E+47││4.09667E+47
65││7.48273E+49││1.99539E+50││1.77975E+48││3.5595E+48
66││6.61665E+50││1.76444E+51││1.54973E+49││3.09946E+49
 楼主| 发表于 2010-9-24 07:55 | 显示全部楼层

[原创]k生素数群的数量公式

10^n││10生素数数量││11生素数数量││12生素数数量
8││0││0││0
9││0││0││0
10││1││0││0
11││3││0││0
12││11││1││0
13││46││3││0
14││209││12││1
15││1013││55││5
16││5161││262││24
17││27470││1309││113
18││151897││6813││553
19││868657││36816││2821
20││5118603││205636││14932
21││30982408││1183149││81652
22││192131139││6991776││459763
23││1217923593││42331059││2658378
24││7876536132││262009150││15746509
25││51880709114││1654792675││95354503
26││3.47524E+11││10646963304││589255184
27││2.36431E+12││69683997723││3710056020
28││1.63175E+13││4.63348E+11││23766265766
29││1.14127E+14││3.12645E+12││1.54704E+11
30││8.08172E+14││2.13856E+13││1.02215E+12
31││5.78944E+15││1.48155E+14││6.84796E+12
32││4.19238E+16││1.03868E+15││4.64785E+13
33││3.06677E+17││7.36347E+15││3.19321E+14
34││2.2648E+18││5.2751E+16││2.21905E+15
35││1.68757E+19││3.8164E+17││1.55874E+16
36││1.2681E+20││2.7868E+18││1.10606E+17
37││9.60513E+20││2.05288E+19││7.92389E+17
38││7.33027E+21││1.52481E+20││5.72829E+18
39││5.6342E+22││1.1415E+21││4.17667E+19
40││4.35994E+23││8.60935E+21││3.07017E+20
41││3.39561E+24││6.53931E+22││2.27429E+21
42││2.66076E+25││5.00049E+23││1.69713E+22
43││2.09711E+26││3.84833E+24││1.27531E+23
44││1.66204E+27││2.97976E+25││9.64738E+23
45││1.32423E+28││2.3207E+26││7.34451E+24
46││1.06042E+29││1.8175E+27││5.62539E+25
47││8.53281E+29││1.43099E+28││4.33376E+26
48││6.8979E+30││1.13244E+29││3.3573E+27
49││5.60103E+31││9.00555E+29││2.61474E+28
50││4.56737E+32││7.19513E+30││2.04685E+29
51││3.73971E+33││5.77456E+31││1.61017E+30
52││3.07407E+34││4.6545E+32││1.27263E+31
53││2.53646E+35││3.7673E+33││1.01042E+32
54││2.10047E+36││3.06141E+34││8.05737E+32
55││1.74552E+37││2.49737E+35││6.45218E+33
56││1.45544E+38││2.04481E+36││5.18771E+34
57││1.21751E+39││1.68025E+37││4.18733E+35
58││1.02168E+40││1.38545E+38││3.3926E+36
59││8.59939E+40││1.14619E+39││2.7587E+37
60││7.25923E+41││9.51296E+39││2.25113E+38
61││6.14525E+42││7.92E+40││1.84319E+39
62││5.21646E+43││6.61363E+41││1.51413E+40
63││4.43976E+44││5.53882E+42││1.24776E+41
64││3.78839E+45││4.65177E+43││1.03143E+42
65││3.24062E+46││3.91745E+44││8.55137E+42
66││2.77871E+47││3.30779E+45││7.11027E+43
 楼主| 发表于 2010-10-6 19:19 | 显示全部楼层

[原创]k生素数群的数量公式

本帖最后由 白新岭 于 2016-7-18 09:15 编辑

这些数据随着n的增大,前边的有效数字是非常准确的,及相对误差越来越小,会无限制的接近0,但永远也不会是0.
很多人对拉曼扭杨系数都感兴趣,都知道那是用特异功能感应到的系数,却不寻找其原因,不追根问底,所以就没有新的发现,找不到更具有深刻含义的系数。
你可以找到偶数在孪生素数对集合中的分拆公式和系数,还可以继续深挖。

点评

我的哥猜,孪生公式,正在构建中,一个不是完美的形式,已经构思完成,未写完,  发表于 2022-10-3 17:00
我现在研究进入关键时期,提供拉曼扭杨系数的原因快了  发表于 2021-7-2 10:10
十年只是弹指间。没有人给出像哈代-李特伍尔德关于哥德巴赫猜想那样的渐进公式,也没有人给出类似拉曼扭扬那样的系数。  发表于 2020-12-31 15:34
十年前埋下寓意至今无人问津,看来除了哥德巴赫猜想由哈代-李特尔伍德给出的猜想公式和孪生素数公式,没有人给出其他的相关公式了。拉曼努金系数一样,没有了新进展。  发表于 2020-10-28 15:25
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2024-11-22 01:38 , Processed in 0.175782 second(s), 28 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表